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Abstract

Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival
in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that
MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-
mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with
one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique
circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched
in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated
with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance
of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral
transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context
provided by completed MGE assemblies.
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Introduction
An environmental mobilome, or meta-mobilome, consists of all
mobile genetic elements (MGEs) found within an environmental
sample [1]. MGEs are pieces of DNA that can move within the
genome of an organism or between the genomes of two differ-
ent organisms. Prokaryotic MGEs include transposable elements,
plasmids, and viruses/phages. MGEs are the major vehicle for the
movement of genetic material between prokaryotes, a process
known as horizontal gene transfer (HGT) [2]. The spread of MGEs
within microbial communities allows for the acquisition of novel
traits that may facilitate adaptation to fluctuating resources and
environmental stressors, driving the ecological diversification of
close microbial relatives [3]. Common MGE-encoded traits include
novel carbon substrate utilization [4], antibiotic resistance [5],
toxin production [6], and heavy metal resistance [7].

Anthropogenic compounds that induce cellular stress
responses can increase rates of MGE mobilization in microbial
populations [8]. Thus, heavily polluted environments may be

major hot spots of HGT. The Oak Ridge Reservation (ORR), located
in Oak Ridge, TN, is a well-characterized experimental site for
examining the ecological impacts of legacy industrial waste [9].
The near-source subsurface is highly acidic and contaminated
with a mixture of nitrate, uranium, and other heavy metals (e.g.,
Ni, Co, Cu, Fe, Al, Cd, Mn, Hg). Prior studies of ORR microbial
populations have suggested that their adaptive evolution may
have been facilitated by the lateral transfer of MGEs. For example,
metal efflux pumps and mercury resistance genes were shown
to be highly mobilizable among Rhodanobacter species that
predominate in the contaminated ORR groundwater [10,11].
Martinez et al. [12] found evidence for horizontal transfer of heavy
metal-translocating P-type ATPases among a large collection of
isolates from the ORR.

High-throughput sequencing has enabled the untargeted,
culture-independent analysis of MGEs from diverse environments
[13–17]. However, only a subset of these studies reported
circularized MGEs. Recently, using a method to enrich for
plasmids during DNA extractions, Kothari et al. [18] recovered
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615 circularized MGEs from an aquifer, and Kirstahler et al. [19]
recovered 159 322 circularized MGEs from global sewage samples.
However, in the latter case, the circularized MGEs skewed toward
shorter sizes (all <17 400 bp). Similarly, Kothari et al. recovered
a relatively small number of MGEs >20 000 bp in length (5.7%,
35/615 circular elements) with only three (0.5%) being >100 000 bp
in length. These results may represent a filtering effect of the
targeted enrichments for MGEs from environmental samples
resulting in a loss in the diversity of mid- (∼20 000–100 000 bp)
to larger-sized (≥100 000 bp) MGEs that are known to be widely
distributed in microbial populations [20,21]. However, assembling
complete, circular MGEs from metagenomes without enrichment
is challenging because (i) MGEs are often in low abundance and
(ii) MGEs often share sequences with bacterial genomes and
other MGEs [22]. Their low abundance means that the MGEs
may not be fully covered by short-read sequencing data. The
shared sequences result in complex and tangled assembly graphs,
resulting in fragmented assemblies [23].

The cataloging of MGE gene function predictions and host range
is essential to accurately model microbial species abundances,
population dynamics, and functional output of environmental
microbiomes at the ecosystem level l [24]. Thus, there is a con-
tinued need for method optimization for the recovery of diverse
MGEs across a representative range of sizes from metagenomes.
Here, we use SCAPP, or Sequence Contents-Aware Plasmid Peeler,
an algorithm designed for the specific purpose of reconstructing
plasmid sequences from metagenomic data [22]. SCAPP leverages
biological knowledge of plasmid sequences and uses plasmid-
specific genes to annotate the assembly graphs. Nodes in the
graph are assigned weights based on the likelihood that they rep-
resent plasmids. SCAPP prioritizes peeling off circular paths in the
assembly graph that include plasmid genes and highly probable
plasmid sequences. It also utilizes plasmid-specific genes and
plasmid scores to filter out potential chromosomal false positives.
Despite its initial design for plasmid circularization, SCAPP is
also very good at circularizing other MGEs, likely due to the
genetic similarities between all MGEs [25] and its ability to extract
circular DNA elements from assembly graphs. We hypothesized
that distinct populations of MGEs would be present in the high-
and low-contamination regions of the ORR subsurface. We further
predicted that MGEs from the highly contaminated regions of the
ORR subsurface would be enriched in clusters of multiple HMRGs
due to their role in the adaptive evolution of microorganisms in
these anthropogenically disturbed environments.

Materials and methods
Sampling and geochemical data
The majority of the sub-surface well geochemistry data were
obtained from publicly available datasets, either from Smith et al.
[26], Wilpiszeski et al. [27], Gushgari-Doyle et al. [28], or from the
publicly accessible US Department of Energy Office of Science
Subsurface Biogeochemical Research web page (https://www.
esd.ornl.gov/orifrc/) [29]. For this study, we performed additional
mercury analyses by ICP-MS (Supplemental Methods). Not all well
samples collected for metagenome sequencing had a complete
set of associated geochemical metadata. However, uranium (U)
measurements were available for all samples and were used to
distinguish between high and low contamination sites. We divided
the sampling sites into two categories based on the US Environ-
mental Protection Agency (EPA) maximum contaminant level U in
drinking water [30]: (i) highly contaminated sites with [U] >
0.126 μM and (ii) low contamination sites with [U] < 0.126 μM).

For the sediment samples, contamination levels were inferred
from the [U] of the groundwater of adjacent wells.

Metagenome sequencing and mobile genetic
element assembly
Samples for metagenome sequencing and assembly were
collected from well water pumped from 17 sites across the ORR
located within the Bear Creek Valley in Oak Ridge, TN, USA
(Fig. 1A, Tables S1 and S2). Groundwater samples from wells
DP16D, FW021, FW104, FW106, FW215, FW300, FW301, FW303,
FW305, FW602, GW715, and GW928 were pumped between
November 2012 and February 2013 and were processed and
initially sequenced as part of a study by Tian et al. [31]. Sediment
samples from borehole FW306 were collected in June 2015 and
the metagenomes were initially sequenced as part of a study
by Wu et al. [32]. Groundwater samples from FW115, GW271,
FW106, and sediment samples from boreholes EB271 and EB106
were collected in March and April 2017 as described in Lui et al.
[33]. All metagenomics sequencing data for this current study
were re-processed through the same bioinformatics pipeline
as described in Lui et al. [33]. We only used samples that were
sequenced using the same technology (2x150bp Illumina reads).
We also ensured that the samples were sequenced deeply (>5Gbp
per assembly, except for EB271-05-01 and EB106-05-06). Briefly,
the Illumina reads were quality-filtered and trimmed using
BBTools 38.86 [34] and assembled with SPAdes Version 3.15.4
[35,36]. Samples were co-assembled if they were replicates
taken from the same physical groundwater or sediment sample.
Co-assemblies are outlined in Supplementary Table 1 of Lui
et al. [33]. Reads for the 2017 EB106, EB271, FW115, GW271,
and FW106 metagenomes were deposited in NCBI’s Sequence
Read Archive in BioProject PRJNA1001011 under accession
numbers SAMN36786281-SAMN36786357. The assembly graphs
and sequencing reads were used as inputs into SCAPP [22] using
default parameters to obtain circular DNA elements. The circular
elements were de-replicated within the high and low [U] sample
sets before further analyses.

Circular element annotations
Annotation of the circular elements was performed using
eggNOG-mapper v2 with default parameters [37] and the
Annotate Domains in a Genome (v1.0.10) application in the
Department of Energy (DOE) KnowledgeBase (KBase) with default
parameters. The latter program identifies protein domains using
the following domain libraries: Clusters of Orthologous Genes
(COGs) [38], NCBI’s conserved domains database (CDD models)
[39], Simple Modular Architecture Research Tool (SMART) [40],
NCBI’s Protein Clusters models [41], TIGRFAMs hidden Markov
models [42], Pfam hidden Markov models, and NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) [43] hidden Markov models.

Classification of circular elements
Circular elements representing viral genomes were predicted
using VirSorter (v1.0.5) [44] implemented in the DOE KBase [45].
Low confidence category 3 and 6 predictions were removed from
the analysis. These circular elements are referred to as “viral
genomes” in the text. Taxonomic classification of categories 1,
2, 4, and 5 assemblies was performed using vConTACT2 (v0.9.19)
[46] implemented in KBase with default parameters. PhaGCN with
default parameters was utilized for viral taxonomy classification
based on ICTV2022 [47,48]. PhaTYP with default parameters
was utilized for phage lifestyle prediction [49]. We compared
the remaining non-viral circular elements to known plasmids
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Figure 1. Origin geochemistry and size distribution of ORR MGEs. For all panels, red colors indicate a high [U] area while blue colors indicate a low
[U] area. The color scheme for the entire figure is shown under the graph in panel B. (A) Map showing the sampling locations within the ORR. (B)
Distributions of uranium concentrations between high and low [U] regions of the site. Map is from Google Maps (Map Data ©2022 Imagery ©2022,
Airbus, Landsat/Copernicus, Maxar Technologies. (C) Distributions of other metal concentrations, nitrate concentrations, and pH between high and
low [U] regions of the site. (D) Violin plots of the size distribution of de-replicated MGE assemblies between the high and low [U] regions of the site. A
Welch’s two-sided t-test was used to test for significant differences between the two distributions.

in the Plasmid Database (PLSDB, v2021_06_23_v2) using the
default search parameters for mash dist, P = 0.1, distance = 0.1.
The circular elements with similarity to known plasmids are
referred to as “plasmids” in the text. The circular elements that

were not already classified by PLSDB or VirSorter were further
analyzed by searching the eggNOG-mapper annotation files for
mobile-genetic element associated Pfams (Table S3). These
circular elements are referred to as “Unclassified MGEs” in the
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text. For the remaining circular elements, we manually examined
the annotation files from the comparisons to CDD models, SMART,
NCBI’s Protein Clusters models, TIGRFAMs, Pfam hidden Markov
models [50], and PGAP hidden Markov models. This allowed us
to identify additional “Unclassified MGEs”. All remaining circular
elements are referred to as “cryptic circular elements” in the text.

Host prediction
Viral hosts were predicted using two parallel methods: (i) k-mer
similarity: as a broader primary method, hosts for all assemblies
were predicted using the Prokaryotic Virus Host Predictor (PHP)
tool [51]. PHP has an accuracy of 80% at the phylum level. These
phylum-level assignments were used for further analysis. (ii)
CRISPR spacer matches: a BLASTn search of viral assemblies was
performed against the IMG/VR v4 databases of isolate and uncul-
tivated microorganism CRISPR spacers [52]. Default parameters
were used. The results were filtered to allow for 0 or 1 mismatches
between the sequences.

Phylum- and class-level taxonomic assignments were per-
formed for the non-viral circular elements using a gene
taxonomy-based approach. Phylogenetic assignments for each
annotated coding sequence were extracted from the eggNOG-
mapper annotation files. The phylogenetic assignments were
tabulated for each non-viral assembly. A taxonomic assignment
at the phylum level was made if >50% of CDS belonged to the
same phylum or class. A similar analysis was performed for
class-level predictions. For all downstream analyses, viral hosts
were considered separately from non-viral hosts, and different
taxonomic levels were analyzed independently.

Functional analyses
To examine HMRGs and antibiotic resistance genes (ARGs) on
the circular elements, COGs annotations were extracted from
the eggNOG-mapper annotations for all analyzed circular ele-
ments. From the COG database, we curated lists of heavy metal
resistance and antibiotic resistance-related COGs (Table S4). We
then searched the annotation files for these curated COGs. These
COG counts were normalized against the total number of cod-
ing sequences (CDS) found on the circular elements in each
sample set (i.e. high [U], low [U] sets). For the identification of
conjugative elements, we curated a list of conjugative transfer
system COGs and searched the eggNOG-mapper annotation files
for these COGs (Table S5). Normalization was performed by the
same method described above. Functional enrichment calcula-
tions, using the absolute gene counts, were performed using a
two-tailed Fisher exact test. The Fisher exact test has been applied
previously to examine functional enrichment within microbial
genomic datasets [53–56]. For these statistical comparisons, the
Benjamini-Hochberg false discovery rate (FDR) multiple test cor-
rection was applied [57].

Data visualization
The following R (v. 4.3.0) packages were used: circlize (v0.4.15) [58],
pheatmap (v1.0.12) [59], and ggplot2 (v.3.4.2) [60]. Plasmid maps
were generated in Geneious Prime (v2022.2). Network diagrams
were generated using Cytoscape (v 3.9.1) [61].

Results
Metagenome-assembled putative mobile genetic
elements from the Oak Ridge Reservation
subsurface
From a total of 32 sediment and 25 groundwater metagenomes
from the ORR [31,32,33], we input the assembly graphs into SCAPP

to obtain 1713 unique, circular elements (>1000 bp in length)
representing putative MGEs [62]. We divided these circular ele-
ments into two contamination levels: those originating from (i)
7 high [U] or (ii) 10 low [U] sites (Fig. 1A and B, Table S1). For
the sediment samples, contamination levels were inferred from
the groundwater of adjacent wells. Compared with low [U] sites
(median [U] = 0.0 μM), the high [U] (median [U] = 58.9 μM) had
higher levels of other metal contaminants including manganese
(Mn), cobalt (Co), nickel (Ni), copper (Cu), cadmium (Cd), and
mercury (Hg) as well as higher concentrations of nitrate and lower
pH (Fig. 1C).

We manually examined the annotation files of these circular
elements to identify false positive MGEs, removing 98 assemblies
that included (i) partial mitochondrial/chloroplast genomes or (ii)
likely long repeat regions that were inappropriately circularized.
This resulted in 338 putative MGEs from high [U] sites and 1277
putative MGEs from low [U] sites (Table S6). Out of the 1615
circular elements, 259 (16%) were greater than 20 000 bp in length
and 22 (2%) were greater than 100 000 bp in length. A bimodal
distribution with peaks at ∼3000 bp and ∼70 000 bp was observed
in both sets (Fig. 1D). However, the distribution of the circular
elements from the low [U] sites was skewed toward the smaller
sizes (i.e., the ∼3000 bp peak). The average length of the circular
elements from the high [U] samples was significantly longer
(22 247 vs. 11 880 bp; two-tailed Welch’s t-test; P = 0.0008) than
those from the low [U] samples. We next examined the structural
and functional implications of this differential size distribution
between these two groups of putative MGEs.

Classification of circular elements
Expected circular MGEs in our dataset include plasmids and
viruses as well as integrative and conjugative elements (ICEs),
integrons, and transposons (Fig. 2A, Table S6). We identified 111
unique viral genomes (7% of all circular elements) with 39 from
the high [U] sites and 72 from low [U] sites (Fig. 2B, Table S7).
The size distribution of viral assemblies was similar (two-tailed
Welch’s t-test; P > 0.05) between the two datasets (Fig. S1A). A
similar proportion of predicted viral assemblies from high and low
[U] sites clustered with known viral taxa within a gene-sharing
network (Fig. S1B and C). Lifestyle analysis predicted that, from
the high [U] regions, 23/39 (59%) of the genomes were temperature
phages while 15/39 (38%) of the genomes were virulent (i.e. lytic)
phages. While, from the low [U] regions, 20/72 genomes (28%)
and 51/72 genomes (71%) were predicted temperate and virulent
phages, respectively (Fig. S1C).

We then compared the 1504 non-viral circular elements with
the PLSDB. Only 23 circular elements (16 from the high [U] sites
and 7 from the low [U] sites) had similarity to known plasmids
(Fig. 2A and B, Table S8). These known plasmids were associated
with various bacterial hosts and originated from both animal
and environmental samples. The most common hosts were
Acinetobacter and Sphingobium for the high and low [U] regions,
respectively. The remaining unclassified circular elements were
then analyzed for known MGE-related Pfam domains (Tables
S3 and S6) [19]. From the high [U] sites, 121 circular elements
were identified with MGE-related Pfams, including 75 (62%)
with plasmid replication domains. From the low [U] sites, an
additional 279 circular elements were identified, including 54
(19%) with plasmid replication domains (Table S9). As highlighted
with the plasmid replication domains, these “unclassified MGE”
populations are distinct between the high and low [U] sites
(Fig. S2). We further annotated the remaining 1104 circular
elements using several additional protein domain databases (see
Methods section for complete list), allowing us to identify 15
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Figure 2. Classification of ORR MGEs. (A) Analysis workflow for the ORR mobilome. Illumina short reads were assembled using SPAdes and SCAPP
was used to peel off putative circular MGEs from the SPAdes assembly graphs. Assemblies were then sorted by whether they originated from a high or
low [U] sample and were de-replicated within those samples. Downstream analyses included MGE type classification, functional gene analysis, and
host prediction. (B) Proportions of classified circular elements (left to right): green indicates viral genomes that were predicted using VirSorter; pink
indicates assemblies predicted to be plasmids based off similarities to known plasmids in the PLSDB; light blue represents assemblies not classified by
the prior two methods, but that carry MGE-related protein domains; and gray represents otherwise unknown (i.e. “cryptic”) circular elements. The
color key is also present on the figure.

and 104 additional circular elements with MGE-related domains
from the high and low [U] regions, respectively (Fig. 2A and B,
Table S6).

The remaining 43 and 64% of the circular elements from the
high and low [U] sites, respectively, are cryptic, with no known
domains involved in MGE replication or mobilization (Fig. 2A,
Table S6). While these cryptic circular elements were signifi-
cantly shorter (AVG: 3026 bp vs. 30 288 bp; two-tailed Welch’s
t-test; P = 4E-11) (Fig. S3) than the non-cryptic elements, these
sequences nonetheless encode genes that may serve important
ecological functions (Table S10). For example, the cryptic circular
element AA_WF_A-C-Q_17, originating from high [U] groundwa-
ter, carries nine genes with putative metal resistance functions.
While AA_WF_A-C-Q_17 does not encode any known MGE-related
Pfams, a gene encoding a DUF6088 family protein is present on
this assembly (Table S11). This uncharacterized protein family is
distantly related to the AbiEi antitoxin family of proteins, suggest-
ing that this cryptic circular element could be a true novel MGE.
Among the most common domains annotated on these cryp-
tic circular elements included non-ribosomal peptide synthases
involved in the biosynthesis of various secondary metabolites,
chemotaxis proteins, pilus assembly proteins, and a variety of
response regulators (Table S10). Overall, we propose that the dif-
ference in circular element size distributions (Fig. 1D) between the
two sample sets is attributable to the distinct populations of MGEs
present.

Predicted hosts of circular elements
Of the viral genomes from the high [U] regions, 47% were predicted
by k-mer similarity to infect Proteobacteria hosts (Fig. 3A, Table
S7) compared with 29% of the viral genomes from the low [U]
regions. In the high [U] regions of the ORR, Proteobacteria predom-
inate, while pristine regions are characterized by greater microbial
diversity [63,64]. Several Proteobacteria genera in the high [U]

regions of the ORR are believed to play significant roles in nitrogen
cycling in the subsurface, a process of critical interest due to the
elevated levels of nitrate contaminating these areas of the ORR
[63]. For example, denitrifying Rhodanobacter spp. dominate in the
most contaminated regions of the ORR subsurface. A previous
study found that 82% of the microbial community in contami-
nated (i.e. high [U]) groundwater well FW106 was Rhodanobacter
[64].

In parallel, we performed CRISPR spacer analysis against
the IMG/VR database to determine more specific taxonomic
assignments. Five out of 111 viral genomes were matched to
an isolate host. An additional, 13 viral genomes were matched
to metagenome-associated hosts. As an example, we identified
a putative Rhodanobacter phage (EB106_02_03_10) (Fig. 3B) in
the high [U] samples. EB106_02_03_10 is a predicted temperate
phage with XerC and RecT-type recombinases that may facilitate
integration in the host genome (Table S11). Interestingly, the
EB106_02_03_10 genome encodes a BglII endonuclease that may
provide host immunity against simultaneous infection when this
phage is in its lysogenic life stage [65]. Also present in the genome
is a gene encoding a putative oxidoreductase, but it is unclear
if this represents a novel auxiliary metabolic gene (AMG) or a
phage lifecycle-related gene. This phage genome also encodes
two different cell wall hydrolases that can promote cell lysis and
drive biomass turnover in the ORR subsurface [66–68].

Host predictions for the remaining (i.e. non-viral) circular
elements were performed using gene taxonomy information
extracted from the eggNOG-mapper annotation files (Table
S6). Due to the absence of known genes, a host could not be
determined for 53% of the non-viral circular elements. Like the
viral genomes, the most frequently identified host phylum in both
sets was the Proteobacteria, with a greater proportion observed
among the circular elements originating from high [U] samples
(Fig. 3C). Where matches were previously made to plasmids in
the PLSDB (Table S8), host predictions were cross-checked with
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Figure 3. Prediction of circular element hosts. (A) Predictions of viral host phyla using a k-mer based method (PHP). Proportions were determined by
normalizing against the total number of unique circular elements in each sample set. The color scheme key is shown on the figure. (B) Viral genome
map with CRISPR-spacer-predicted Rhodanobacter host. (C) Predictions of host phyla for non-viral circular elements using a gene phylogeny-based
approach. Proportions were determined by normalizing against the total number of unique circular elements in each sample set. The color scheme is
the same as shown in panel A.

host metadata. Out of the 23 assemblies with PLSDB hits, 21
had predicted host taxonomy that was consistent with the host
metadata of the PLSDB plasmid.

Functional analysis of mobile genetic element
assemblies
We next compared the functional gene content of the circular
elements from high and low [U] regions of the ORR subsurface.
We hypothesized that both HMRGs and ARGs would be enriched
in the high [U] circular elements due to the selective pressure of
the heavy metal contamination.

Minimal enrichment of antibiotic resistance
genes in circular elements from high [U] sites
In some environments, heavy metal contamination can co-select
for ARGs alongside HMRGs [69–71]. However, the ARG count in
our complete circular element dataset was low (Table S12). The
ARG counts were normalized against the total CDS count for each
sample set (i.e., high [U] and low [U] circular elements) to account
for the size differences in the circular elements noted in the prior
section. The overall ARG abundance was similar between the high
and low [U] sample sets (two-tailed Fisher’s exact test, P > 0.05)
(Fig. S4A). When considering individual genes, no enrichment
pattern was observed (Fig. S5B). We repeated this analysis in a
more conservative manner by first removing the cryptic circular
elements from the dataset. This calculation yielded similar results
to the analysis that had included the cryptic circular elements
(Table S13). Overall, these data do not support a substantial
enrichment of ARG among our putative MGEs from the high [U]
samples.

Assemblies from high [U] sites are enriched in
heavy metal resistance gene clusters
As MGEs are frequently vectors of HMRGs [12,72], we next exam-
ined our dataset for genes involved in heavy metal resistance
(Tables S4, S11, S12). We found a significant (two-tailed Fisher’s
exact test, P < 0.0001) overabundance of HMRG content on the
circular elements from the high [U] sites (Fig. S5A). The assemblies
from the high [U] regions encoded 32 HMRGs per 1 million base
pairs (∼6.4% of total CDS) while the assemblies from low [U]
sites encoded 6 HMRGs per 1 million base pairs (∼1.5% CDS).
This trend was largely replicated in the analysis of individual
HMRGs (Fig. 4A). Major exceptions included genes involved in
arsenic (acr3, arsB, arsC, arsA) and tellurium resistance (terC, tehB)
where no enrichment was observed in either direction. No HMRGs
were enriched on the circular elements from the low [U] sites. We
repeated this analysis using datasets that excluded the cryptic
elements which yielded the same results as the previous anal-
ysis with the cryptic elements, except for cusF which was no
longer significantly enriched in the high [U] circular elements
(Table S14).

We predicted that MGEs from higher [U] regions may be more
likely to encode multiple HMRGs than those from the low [U]
regions due to the multi-metal components of the contaminant
plume. We found that HMRG on the MGEs from the high [U]
regions are more likely to co-occur in proximity in the form
of gene clusters than those from the low [U] regions (Fig. 4B).
We next analyzed specific HMRG co-occurrence patterns on the
circular elements (Fig. 4C). Among the high [U] circular elements,
we observed frequent co-occurrences of merR, chrB1, chrA, copZ,
merA, arsR, cusA, cusF, pcoB, czcD, and zntA with each other. The
HMRGs confer resistance to a wide range of metals. An example
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Figure 4. Analysis of MGE-associated HMRGs. (A) Relative abundance of individual HMRGs normalized against the total annotated CDS in each
de-replicated dataset. Statistical comparisons were performed using a two-sided Fisher’s exact test (∗ P < 0.05; n.s = not significant, with
Benjamini-Hochberg FDR correction). The associated grid indicates metals that each gene confers resistance to. (B) Neighborhood analysis of
individual HMRGs. The histogram displays the probability that an individual HMRG is immediately adjacent (+/− 4 ORFs) to another HMRG. (C) The
heat map displays co-occurrence patterns of HMRG pairings on circular elements. Only half of each matrix is shown for simplicity. Co-occurrence >0
are shown on the heat map. Clustering was performed using a Euclidian distance metric.

of this HMRG-clustering phenomenon is seen on the plasmid
EB106_03_01_3 from the high [U] region. This plasmid contains
merA, merR, zntA, czcD, and arsR in close physical proximity to
each other (Fig. S5B). In contrast, the low [U] circular elements
primarily had co-occurrences of individual HMRGs and their cor-
responding metal-responsive transcriptional regulators, merR and
arsR (Fig. S5B).

Partitioning of HMRGs between classes of MGEs
We hypothesized that both plasmids and viral genomes would
be significant vectors of HMRGs in the ORR subsurface. Viruses
that infect bacteria or archaea may significantly augment host

metabolic potential during infection via AMGs. AMGs encode
diverse functions such as nutrient metabolism [73], virulence
factors [74], oxidative stress defense [75], and toxicant (e.g. antibi-
otics and heavy metals) resistance [76]. We identified AMGs in
our predicted viral assemblies by excluding genes involved in
viral replication, structure, and function (Table S15). No AMGs
related to heavy metal resistance were found in the assemblies
from the low [U] regions. Within the high [U] regions, a single
viral assembly (AA_WF_G-H-W_1) carried AMGs that may func-
tion in heavy metal resistance including genes encoding TerD
domain-containing proteins and TelA family protein, which have
annotated functions in tellurium resistance but likely represent
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general cell envelope stress resistance proteins (Table S15) [77,78].
Additionally, a gene encoding a TerC family protein was present;
however, TerC was recently found to be involved in the meta-
lation of exoenzymes during protein secretion [79]. While Pro-
teobacteria predominate in the contaminated ORR subsurface
[26], AA_WF_G-H-W_1 is predicted to infect a member of the
phylum Caldiserica. Thus, the phages in our dataset more are
likely to impact Proteobacteria population dynamics in the con-
taminated ORR subsurface through biomass turnover rather than
the introduction of novel adaptive genes via HGT.

In contrast to the viral genomes, assemblies with similarity to
known plasmids in the PLSDB (i.e., predicted plasmids) carried
a substantial proportion of the HMRGs (19% of HMRG-encoding
MGEs) despite representing only 1% of the total MGEs in our
dataset (Fig. 5). The remaining HMRGs were associated with (i) the
“unclassifiable” circular elements that encode MGE-related pro-
tein domains (70% of HMRG-encoding MGEs) and (ii) the cryptic
circular elements (9%) (Fig. S3). We examined the host predictions
for these non-viral MGEs that carry HMRGs. At the class level,
Beta/Gammaproteobacteria are the most common hosts for the
HMRGs from the high [U] regions while Alphaproteobacteria are
the most common hosts of these genes in the low [U] regions
(Fig. 5B).

We next explored the possible mechanisms by which the MGE-
associated HMRGs could move within the microbial populations
in the ORR subsurface. As described above, the viral genomes
in our dataset are not the main vectors for the movement of
HMRG within the ORR microbial populations. However, 54 of the
non-viral circular elements carried at least one COG associated
with conjugal transfer systems found on conjugative (i.e., self-
transmissible) plasmids and integrative and conjugative elements
(ICEs). We examined the co-occurrence patterns of HMRGs and
genes encoding conjugative transfer machinery (Table S5). We
found that the HMRGs in our dataset were significantly more
likely to be associated with a conjugative element than a non-
conjugative element (two-tailed Fisher’s exact test, P < 0.0001)
(Fig. 5C). In fact, 90% of the identified HMRG were located on
a conjugative element. These trends remained even when the
data were analyzed by contamination levels (i.e., high vs. low [U]).
Thus, most HMRGs in our dataset have a high potential for future
conjugative transfer within the ORR community, independent of
the current level of contamination at their origin site.

Discussion
This is the first study to characterize the meta-mobilome of a
highly contaminated subsurface environment. Through the usage
of short-read sequences alone, we recovered 1615 unique circular
elements that we propose represent MGEs. In this dataset, we
simultaneously identified and characterized viral genomes, plas-
mids, and other types of MGEs, including potentially novel fami-
lies. Thus, this work diverges from prior studies that have primar-
ily focused on one class of MGEs (e.g. plasmids, viruses) within the
meta-mobilome. This agnostic approach allowed for the examina-
tion of the partitioning of key functional genes between different
classes of MGEs. For example, we found that the HMRGs in our
dataset were exclusively associated with non-viral contigs—many
of which were predicted conjugative elements. Additionally, we
speculate that the lack of a “plasmid safe” DNA digestion step
employed by previous studies allowed us to recover a larger
number of substantially longer putative MGEs than prior meta-
mobilome studies [19].

Environmental stressors may select for a pool of MGEs that
confer fitness advantages to their hosts within the specific envi-
ronmental context [13,19,80,81]. We observed an enrichment of
multiple HMRGs in our meta-mobilome extracted from samples
from high [U] sites. The HMRG enrichment pattern was consistent
with the contaminant profile of the ORR subsurface. For example,
we observe the enrichment of genes involved in Cd, Cu, and
Co resistance—all of which are found at sufficiently elevated
concentrations in the contaminated ORR subsurface to be toxic
to certain native microbiota [82–84]. In contrast, the abundances
of genes involved in Te and As resistance were similar between
the two datasets. In the contaminated regions of the ORR, arsenic
is slightly elevated relative to the background ([As]Median = 5 nM
vs. 0.5 nM); however, these values are orders of magnitude below
typical toxicity thresholds for arsenic in microorganisms [82].
Likewise, tellurium is an exceptionally rare element that is not
a component of the ORR contamination plume [26]. Additionally,
several studies have also suggested that the classical “tellurium
resistance genes” (e.g. ter, teh) may have primary functions unre-
lated to tellurium resistance, such as phage and antibiotic resis-
tance [85,86].

A distinctive feature of the MGE-associated HMRGs from the
high [U] regions of the ORR was their physical clustering on the
circular elements. The non-random associations of functionally
similar genes are well-characterized in bacteria [87]. However, the
evolutionary mechanisms driving this clustering remain contro-
versial and are likely to be context specific. The Selfish Operon
Model proposes that gene clusters are formed and maintained
through the emergent benefit to the genes themselves rather than
their host organism [87]. In this model, the clustering of genes
is essential for the successful horizontal transfer of genes that
individually confer minimal selectable function. For example, the
clustering of multiple ARGs on plasmids can be explained by
an extension of the Selfish Operon Model [3]. Co-localization of
ARGs on a single plasmid may be a successful strategy for long-
term ARG persistence in human pathogens that are frequently
targeted by multi-antibiotic therapy. We can apply a similar line
of logic to the HMRGs in our dataset: individual HMRGs may
provide minimal selectable function in a complex high-stress
environment, such as the ORR subsurface, where multiple metal
contaminants co-exist. Successfully retained HMRGs may be fre-
quently co-localized with other HMRGs. In a larger-scale example
of this phenomenon, Staehlin et al. [88] used a molecular clock to
link the origin and diversification of a 19-gene copper homeostasis
and silver resistance transposon in Enterobacteriaceae to increases
in human metallurgical activity throughout history.

In our study, a substantial proportion of the MGE-encoded
HMRGs (all sites: 94%; H: 94%; L: 93%) were associated with
Proteobacteria hosts. A recent study by Finks and Martiny [89]
found that plasmid traits varied significantly with their host’s
taxonomic assignment at the phylum level using a large dataset
of publicly available plasmids. However, certain trait variation
was still controlled, in part, by differences in the environment of
origin. When we only consider circular elements with predicted
Proteobacteria hosts, the HMRG content remains significantly
enriched (two-tailed Fisher’s exact test, P < 0.0001) among those
originating from high [U] regions of the ORR subsurface compared
with those from the low [U] regions. Considering our findings
here in the context of prior work [89,90], we propose a model for
our system where host taxonomy establishes a baseline “genetic
potential” for the acquisition of novel MGE-encoded genes. This
genetic potential may be controlled, in part, by positive or negative
interactions between horizontally acquired resistance genes and

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae064/7667809 by U
niversity of Tennessee C

ollege of Law
 Library user on 04 June 2024

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae064#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae064#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae064#supplementary-data


Mobilome of a metal-contaminated site | 9

Figure 5. Partitioning of HMRGs between classes of MGEs and hosts. (A) The top bar shows the classifications of the circular elements that encode at
least one HMRG (n = 47). The bottom bar shows the classifications of all circular elements in the dataset (n = 1615). Proportions of classified circular
elements (left to right): green indicates viral genomes that were predicted using VirSorter; pink indicates assemblies predicted to be plasmids based off
similarities to known plasmids in the PLSDB; light blue represents assemblies not classified by the prior two methods, but that carry MGE-related
protein domains; and gray represents otherwise unknown (i.e. “cryptic”) circular elements. The color key is also shown in panel A. (B) Chord diagrams
linking HMRG (top of diagram) in the dataset to associated host class (bottom). The numbers on the diagram represent the ordering (and, by extension,
counts) of the genes in the dataset. (C) Proportions of conjugative and non-conjugative elements (left to right) that carry 1+ HMRG (dark purple) or no
HMRG (light purple). Proportions are normalized against the total number of unique assemblies. Viral genomes were excluded from this analysis. The
color key is also shown in panel C.

cellular metabolic genes in the host genome [91]. However, selec-
tive pressures in the host’s environment control the enrichment of
certain MGE-encoded traits within a taxonomic group. As a final
point of consideration: HMRG are best characterized in readily
culturable Proteobacteria [92]. Thus, the association between the
two in our environment may reflect, to an extent, this under-
sampling in the scientific literature. However, this association is
not entirely spurious as Proteobacteria are indeed highly enriched
within the high [U] ORR subsurface relative to low [U] regions of
the site [63]. The ability to rapidly acquire and maintain MGEs
carrying clusters of HMRGs may have been one factor that has
facilitated the success of members of this phylum in the ORR
subsurface.

Viral genomes have been proposed as significant vectors for
the shuttling of metabolic genes between different host cells
[73]. However, we identified only a singular instance of a HMRG
encoded on a viral genome. Instead, we found that the HMRGs
in our dataset were largely associated with conjugative elements.
These “conjugative elements” likely include both conjugative plas-
mids and ICEs [93]. These HMRG-carrying conjugative elements
included both (i) circular elements with high similarity to known
plasmids in the PLSDB as well as (ii) potentially novel conjugative
elements. Our results mirror those of Finks and Martiny [89] who
found a significant association between resistance genes (i.e.,
antibiotic, metal, and biocide resistance) and the MOB family
relaxase, which is encoded on both conjugative and mobilizable
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plasmids. The underlying mechanism for this association
between resistance genes and conjugation/mobilization genes is
unclear and warrants further investigation. One possibility is that
simple genetic traits conferring a strong and immediate selective
advantage (i.e. resistance genes) may increase the fitness of the
new host strain, offsetting the fitness costs of maintaining these
larger plasmids during the initial period of plasmid-host adap-
tation following acquisition, promoting the linkage of resistance
genes to these classes of larger plasmids [94]. This initial obser-
vation reported here could be further addressed with a future
large-scale analysis of global metagenomic datasets. Based on our
findings and the recent report from Finks and Martiny, we predict
that a similar association between HMRGs and conjugative
elements will be observed in the meta-mobilomes from diverse
environments.

Another significant distinction between the high and low [U]
sites is the size distribution of the circular elements. We speculate
on two possible (and not mutually exclusive) origins of this size
differential. First, there are significant differences in the commu-
nity compositions between high and low [U] sites. The high [U]
sites are very simplified communities predominated by Gamma/-
Betaproteobacteria [26,63,64]. The low [U] sites have much greater
diversity. Plasmid size distributions, for example, are known to
vary between bacterial families [20,89]. These differences in com-
munity diversity likely also contributed to the lower number of
circular elements recovered from the high [U] sites. A second
possibility is a filtering effect due to the various environmental
stressors at the high [U] sites. For example, prior studies have
found that environmental conditions may differentially impact
plasmid stability within microbial communities [95,96]. Under
metal exposure, a broad-host-range plasmid lacking HMRGs had
reduced transmissibility within an agricultural soil community
[95]. We speculate that smaller plasmids lacking HMRGs may be
readily lost within the high [U] sites of the ORR subsurface due
to both reduced transmissibility and a high metabolic burden
without any offsetting fitness benefit.

Consistent with other metagenomic studies, we have uncov-
ered an enormous diversity of potentially novel MGEs in the
ORR subsurface. Across our entire dataset, 60% of the circular
DNA elements did not encode any identifiable MGE-related
genes. This is similar to the results of Kirstahler et al. [19]
who found that 53% of the circular DNA elements in their
global sewage meta-mobilome did not carry any identifiable
MGE-related Pfam domains. However, several studies have
identified small cryptic plasmids in bacterial isolates that contain
no recognizable replication machinery [97–100]. It has been
speculated that cryptic plasmids may play roles in viral defense
[101] or functionally serve as empty backbones for the acquisition
of novel genes [102] Additionally, some of these cryptic elements
may represent currently undescribed classes of MGEs. In recent
years, numerous new classes of MGEs have been identified and
described in the literature [103,104]. We expect that as time goes
on, our ability to better classify these currently cryptic elements
will improve. One limitation of this work is our usage of short-
read sequencing technology, increasing the likelihood that some
of these cryptic elements may represent misassembles due to
failure to span repetitive elements of larger sequences [105].
However, we did remove the obvious instances of this occurrence
from our analysis. Nonetheless, our work here highlights the value
of assembling completed MGEs from metagenomic datasets.
These data provide useful genomic and taxonomic context to key
resistance traits often considered in isolation in metagenomic
studies.
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